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Cylinder-shaped perfect lens deduced from the coordinate transformation method is proposed. The previ-
ously reported perfect slab lens is noticed to be a limiting form of the cylindrical lens when the inner radius
approaches infinity with respect to the lens thickness. Connaturality between a cylindrical lens and a slab lens
is affirmed by comparing their eigenfield transfer functions. We numerically confirm the subwavelength fo-
cusing capability of such a cylindrical lens with consideration of material imperfection. Compared to a slab
lens, a cylindrical lens has several advantages, including finiteness in cross section and ability in lensing with
magnification or demagnification. Immediate applications of such a cylindrical lens can be in high-resolution
imaging and lithography technologies. In addition, its invisibility property suggests that it may be valuable for
noninvasive electromagnetic probing.
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The recent works on invisibility cloaking devices1,2 have
triggered a widespread interest on design of functioning elec-
tromagnetic �EM� devices based on the coordinate transfor-
mation approach. In an effort to unify a range of EM “meta-
phenomena,” Leonhardt and Philbin3 point out that a perfect
slab lens made of negative index material �NIM� can be in-
terpreted as a result of a coordinate transformation that maps
a single region in virtual EM space to multiple regions in
physical space.4 A recent extension of this concept for de-
signing slab lenses with additional operation functions, such
as image translation, rotation, and magnification, has been
presented in Ref. 5. In this paper we report deployment of a
spatial mapping in cylindrical coordinate for designing an
annular structure which can be considered as a cylindrical
analog of the previously much debated perfect slab lens.
Such a cylindrical lens overcomes two shortcomings of a
slab lens. First, its body has a finite cross-sectional size. No
structural truncation in cross section is necessary for its
physical implementation.6 Second, it can form magnified or
demagnified image. These advantages can make such a lens
more favorable across many scenarios. It should be noticed
that Pendry7 has previously proposed a version of perfect
cylindrical lens which is based on rolling up a perfect slab
lens existing in the virtual EM space. However, some mate-
rial parameters of Pendry’s cylindrical lens are gradient over
the entire domain; in addition, the gradient parameters ap-
proach infinity in the interior of the lens. Hence, a direct
forward theoretical confirmation of that lens is seemingly
impossible, not to mention the difficulty in its realization. In
contrast, the cylindrical lens under current study has all finite
material parameters, and an appropriate design can leave the
exterior region unaltered as free space. Therefore, the final
device is much more favorable from both realization and
application points of view.

The proposed cylindrical perfect lens is realized by taking
a coordinate transformation from a virtual free EM space
�r� ,�� ,z�� to the physical space �r ,� ,z�, both denoted in cy-
lindrical coordinate. To achieve imaging in radial direction,
we map the coordinates as r�= f�r�, ��=�, and z�=z. One
simple example of f�r�, as illustrated in Fig. 1�a�, takes the
form of

r� = �
sa + �1 − s�b

a
r , if r � a;

sr + �1 − s�b , if a � r � b;

r , if r � b ,
� �1�

where a and b are the inner and outer radii of the deduced
cylindrical lens �hence thickness d=b−a�, and s is the nega-
tive slope deployed in the mapping function. The continuity
of the radial mapping function is required in order to achieve
impedance-matched material interfaces. The negative slope
at a�r�b is responsible for transforming a single region in
virtual space to multiple regions in physical space. While the
slope can be of any negative value, in this paper we focus
mainly on a slope of s=−1. In Eq. �1�, the space outside the
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FIG. 1. �Color online� Schematic illustration of the principle for
idealized perfect cylindrical lensing. �a� Spatial mapping function.
�b� Imaging of a line current source by a perfect cylindrical lens.
Color map shows the real part of the Ez field.
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lens body is kept unaltered, which allows the lens structure
to work in a free-space environment.

Coordinate transformation projects field in EM space di-
rectly to physical space in accordance to the form-invariance
property of the Maxwell equations. Consider a line current
source which is positioned at r�= 3b−a

2 and oriented along z�
axis in virtual space. Its electric radiation field Ez�

� �a zeroth-
order Hankel function� can be mapped to the physical space
via the relation Ez�r�=Ez�

� �r��. The resulting field distribution
in physical space, illustrated in Fig. 1�b� by its real part,
shows as if there are three current sources located at r
= 3b−a

2 �outside�, r= a+b
2 �within�, and r= 3ab−a2

4b−2a �inside�. The
equivalence of such multiple points in physical space implies
that the device is able to duplicate perfect copies of a
source.4,8 The lens can image either in inward mode �object
is placed outside and its image is formed inside� or reversely
in outward mode with comparable performances. Given the
mapping function described by Eq. �1�, the object needs to
be placed within a certain distance to the lens’ surfaces: out-
side the lens, the effective region is b�ro� �2b−a�; and
inside ab

2b−a �ro�a.
The mapping function in Eq. �1� can be readily used to

understand the so-called hyperlenses proposed in Refs. 9–11
under the context of cylindrical structure. These designs
were proposed to solve the impedance mismatch problem of
the multilayered cylindrical lenses theoretically analyzed in
Refs. 12 and 13 and demonstrated in Refs. 14 and 15. Under
the framework of transformation optics, the designs in Refs.
9–11 are inherently “less perfect” than the cylindrical lens
proposed in this study. The design method proposed in Ref.
11 can be interpreted as using an identical mapping function
as in Eq. �1�, but with a zero slope for a�r�b. For such a
lens, perfect imaging happens only when the object is placed
exactly at r=a, and a corresponding image at r=b. Notice
also that a coordinate transformation with a zero-sloped
mapping function leads to unphysical extreme material pa-
rameters. While in Ref. 9, the design of a hyperlens can
again be interpreted as using Eq. �1� but with a close-to-zero
positive slope for a�r�b. No perfect imaging can be
achieved in this scenario. The lens relays an object’s near
field at r=a to r=b with minimal decaying, owing to the
adjacency of r=a and r=b surfaces in virtual space.

According to the coordinate transformation described by
Eq. �1�, we derive material parameters for the designed cy-
lindrical lens body �a�r�b� as

�r = �r =
r − 2b

r
, �� = �� =

r

r − 2b
, �z = �z =

r − 2b

r
,

�2�

and for interior region r�a as

�r = �r = 1, �� = �� = 1, �z = �z = �2b − a

a
�2

. �3�

The lens has negative anisotropic permittivities and perme-
abilities. At r=b, the lens has all material parameters valued
at −1, which is perfectly matched to air; at r=a, it has �r

=�r= a−2b
a , ��=��= a

a−2b , and �z=�z= a−2b
a , which matches to

the interior material. EM field in the interior region is com-
pressed in wavelength as compared to in free space due to its
larger �z and �z values. This contributes to image demagni-
fication for inward lensing operation, or magnification vice
versa. It is worth mentioning that when the lens thickness d
is very small compared to a, the lens’ material parameters at
r=a approach to −1, whereas �z and �z values of the interior
material approach to 1. That is, the cylindrical lens physi-
cally becomes a previously reported prefect slab lens.3

The perfect cylindrical lensing phenomenon predicted by
coordinate transformation, as illustrated in Fig. 1�b�, how-
ever should be verified using full-wave analyses. One factor
for the necessity of such explicit verification is that coordi-
nate transformation has presumed the time-harmonic steady
state. In a previous time-domain analysis for a slab lens, it
was noticed that reconstruction of a Fourier field component
at the other side of the lens can take impractically long time
when the slab index approaches to ideal value, i.e., −1.16

This suggests that perfect imaging by a slab lens is rather a
“wishful” event which relies on infinite happening time.
Nevertheless, subwavelength imaging can be realized by slab
lenses with imperfect materials.16,17 Our frequency-domain
finite element calculation showed no convergence for a cy-
lindrical lens with ideal parameters as specified by Eq. �2�,
which reflects the same singular problem of the lens. In the
following analyses, we examine the performance of cylindri-
cal lenses with the presence of material perturbations.

For ease of clarification, we restrict our studies to in-plane
propagation case �wave vector in r� plane� with electric field
solely polarized in z direction �Ez polarization�. It should
however be kept in mind that coordinate transformation
promises focusing in a full three-dimensional �3D� scenario
with an arbitrary wave polarization. The relevant material
parameters hence are �z, �r, and ��. We append a common
factor �, with �=1+�, to each of the lens’ ideal material
parameters. � is referred to as material perturbation, and its
imaginary part represents material loss. Material perturba-
tion, especially loss, is inevitable for resonance-based nega-
tive permittivity or permeability metamaterials. For conve-
nience, we denote layers in the three-layered system from
inside to outside as layer 1, 2, and 3 respectively. General
field solutions in three layers, in terms of Ez, are

Ez
1 = �

m
�Am

1 Jm�k0
2b − a

a
r�

+ Bm
1 Hm

�1��k0
2b − a

a
r�	exp�im �� , �4�

Ez
2 = �

m


Am
2 Jm�k0��r − 2b��

+ Bm
2 Hm

�1��k0��r − 2b��exp�im �� , �5�

Ez
3 = �

m


Am
3 Jm�k0r� + Bm

3 Hm
�1��k0r�exp�im �� , �6�

where k0 is free-space wave number, m is the azimuthal mo-
mentum number, and Ai and Bi �i=1,2 ,3� are coefficients.
We take exp�−j	t� time-harmonic dependence. Therefore the

YAN, YAN, AND QIU PHYSICAL REVIEW B 78, 125113 �2008�

125113-2



Hankel function of the first kind Hm
�1� in Eqs. �4�–�6� repre-

sents an outgoing cylindrical wave. Unlike in a planar sys-
tem where purely evanescent or propagating eigenwaves ex-
ist, all eigenwaves in the cylindrical lens system are
propagating. Despite the dissimilarity in eigenwaves, we
show in the following that superlensing mechanisms of two
types of lens can be bridged.

First, we consider a cylindrical lens whose inner radius a
is much greater than both its thickness d and the operating
wavelength. The system resembles a slab lens in both geom-
etry and material parameters. Our objective is to show how
the imaging performances of such a cylindrical lens and a
slab lens of the same thickness can be quantified in a unified
manner. For a slab lens, the transfer function, which de-
scribes the ratio of field strengths at image and source posi-
tions for each plane-wave component, has been used for de-
scribing its imaging capability.16–18 Consider a slab lens with
thickness d=
 /2 which is placed in yz plane and centered at
x=0. Likewise, we assume that waves are propagating in xy
plane with pure Ez polarization. The slab lens has material
parameters of �=�=−�=−1−�, with �=0.0001–0.00001i.
Its transfer functions, as characterized by normalized ky are
shown in Fig. 2 �solid curves� for three different object po-
sitions. For this particular material perturbation introduced,
restoration of evanescent waves �ky �k0� at the image posi-
tions �always 2d apart from the source� has been realized up
to a certain ky. The transfer functions are characterized by a
resonance before the transmission damps heavily. The free-
space transfer function from the source position to image
position �without the slab lens� is also included in Fig. 2. The
evanescent waves can barely reach the image position. For a
cylindrical lens, one may first be puzzled by the absence of
decomposable wave vectors in the general solutions �Eqs.

�4�–�6��. In fact, the azimuthal momentum number m deter-
mines the pace of field variation along the surface-tangent
��� direction. The azimuthal momentum number can be con-
verted to azimuthal wave number as k�=m /ri, where ri is the
radial image position.19 In order to obtain sharp image espe-
cially in � direction, existence of high-order cylindrical wave
components at the image position is essential. Hence, trans-
mission of cylindrical waves through a cylindrical lens pro-
vides vital information for the lens’ imaging capability. Here
we consider a cylindrical lens with d=
 /2 and a=10
. � is
kept the same as in the slab case. The cylindrical wave trans-
fer functions for outward lensing operation, plotted in terms
of normalized k�, are superimposed in Fig. 2. Three different
object positions have been studied in Fig. 2. The transfer
function records the ratio of field strengths at the image and
source positions at different cylindrical wave order number
m. For each m, the field ratio is derived through matching of
the tangential fields at both r=a and r=b interfaces. Refer-
ring to Eqs. �4�–�6�, for outward imaging operation, the task
is to find the coefficient B3 from a known value of B1; while
for inward imaging operation, the task is to find the coeffi-
cient A1 from a known value of A3. Unlike for a slab lens
case, the transfer function for a cylindrical lens is too lengthy
to be expressed here, owing to the presence of transcendental
Bessel functions. For consistency, the free-space cylindrical
wave transfer function is also shown. From Fig. 2, we notice
excellent agreement between the transfer functions for cylin-
drical and slab lenses. With the same thickness and material
perturbation, the two types of lenses are therefore equivalent
in their imaging capabilities. Both of them can restore a
spectrum of waves �k
�,y�k0� that were lost in the absence
of the lenses. Figure 2 provides independent verification of
the subwavelength imaging capability of a cylindrical lens.

Next, we look into the imaging performance of a cylin-
drical lens as its inner radius a decreases. At a smaller a
value, the physical problem becomes more distinct as com-
pared to a slab lens. It is worth noting that, when the object
and image points under examination are very close to the
origin of cylindrical system, a cylindrical wave can appear to
be a strong mixture of both propagating and evanescent
waves. This can be observed by comparing the free-space
transfer functions in slab and cylindrical systems shown in
Fig. 3. Having known this, one would naturally expect to see
the distinct character of a cylindrical lens as reflected in its
transfer function. The result however turns out to be a bit
surprising. The cylindrical wave transfer function is hardly
affected when its inner radius is reduced even close to wave-
length. In our case study, we fix thickness d=0.25
 and de-
crease a from infinity to 0.5
. Material perturbation is again
held at �=0.0001–0.00001i. Besides showing the effect of
reducing a on the transfer function, we also take this oppor-
tunity to examine the difference in performances between
two operation modes of the same lens, i.e., inward imaging
and outward imaging. For each operation mode, we start
from the slab lens case �a=��, and decrease a to 1.5
 and
then to 0.5
. The variation of the transfer function is shown
in Fig. 3. Notice that for inward operation, k� is normalized
with respect to the wave number in layer 1, i.e., k1=k0

2b−a
a .

Object position for inward operation is at �3b−a� /2, and for
outward operation �3ab−a2� / �4b−2a�. Figure 3 shows that
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FIG. 2. �Color online� Comparison of transfer functions for a
cylindrical lens and a slab lens of the same thickness. Three differ-
ent object positions are shown: for cylindrical lens ro,1= 5ab−a2

8b−4a ,
ro,2= 3ab−a2

4b−2a , ro,3= 7ab−3a2

8b−4a ; and for slab lens xo,1=− 5d
4 , xo,2=−d,

xo,3=− 3d
4 . Two sets of object positions are equivalent when a and b

are much larger than d. For the cylindrical lens the corresponding
angular momentum number is marked on the secondary x axis.
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the transfer function shifts only very slightly when a de-
creases from infinity to 0.5
. Therefore it can be concluded
that, with the same thickness and material perturbation, a
cylindrical lens, even at an overall scale comparable to wave-
length, is as effective as a slab lens for achieving subwave-
length imaging. This conclusion is valid for either inward or
outward operation mode. The sharp variations of the inward
transfer functions at small k� values �see the inset in Fig. 3�
are due to near zero field values at both object and image
positions. They are not caused by resonances.

The inevitable material imperfectness imposes a rather
stringent limitation on the lens shell thickness. For a slab
lens, it has been noticed that a smaller thickness drastically
improves the imaging performance �or equivalently, relaxes
the requirement for material perfectness in order to achieve
the same subwavelength imaging�.17 We have noticed the
same for cylindrical lenses. This information can be obtained
by comparing Figs. 2 and 3. In general, with a reasonable
material perturbation, the thickness of a cylindrical lens
should be kept less than a wavelength in order to achieve
subwavelength resolution. Here we explicitly look into the
effect of material perturbation on a relatively thin cylindrical
superlens’ performance. The cylindrical lens to be studied
has fixed geometrical parameters as a=0.5
 and d=0.25
.
First the effect of material loss is examined by keeping the
real part of �, or R���, at 0.0001, and increasing the imagi-
nary part I��� from 0.00001 up to 0.001. The variation of the
transfer function for inward operation mode, with object po-
sition ro= �3b−a� /2, is shown in Fig. 4. From the figure, it is
noticed that if I����R���, only the “finesse” of the reso-
nance peak is affected. Higher loss suppresses the resonance.
Only when I����R���, the transmission starts to drop at a
significantly lower k� value, which therefore affects the im-
age resolution. A material perturbation dominated by either
its real part or imaginary part �but with around the same
value� will result in similar transfer functions, with the ex-
ception that no resonance peak is present for the transfer
function resulted from the latter perturbation. This is con-
firmed by two curves ��=0.0001−0.001i and �=0.001
−0.0001i� in Fig. 4. The imaging enhancement factor, de-

fined as the maximum k� /k1 at which the transmission from
the object to image is close to unity, is about 4.5 for �
=0.0001−0.001i and 6 for �=0.0001–0.00001i. The results
suggest that cylindrical lenses under study are able to image
with subwavelength resolution. When the perturbation is re-
duced further, the resonance peak will shift to an even larger
k� value. In the limit, for an ideal lens the resonance happens
at infinite k�.

In Fig. 5, we show the radial �Ez� field distribution of a
high-order cylindrical wave �m=15� for the lens studied in
Fig. 4. Particularly, we increase the loss perturbation and
observe its effect on field profile. R��� is kept at 0.0001, and
I��� is changed from 0.00001 to 0.005, 0.05, and 0.1. The
cylindrical wave, at the vicinity of the object or image posi-
tion, resembles a purely evanescent wave. The field only
becomes oscillating at a distance further away from the ori-
gin. With a very small loss, the incoming field from outside
penetrates freely �through the formation of a so-called anti-
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surface mode at the outer interface� into the lens body and
excites a surface mode at the inner lens boundary. The field
amplitude is therefore amplified. With a further decay in lens
interior, the field amplitude at the image position is almost
exactly the same as at the object position. Restoration of the
cylindrical wave is realized. When the loss increases, a sur-
face mode starts to build up at the outer boundary of the lens,
while the strength of the surface mode at the inner boundary
is gradually muted. At I���=0.01, the loss becomes so heavy
that the first surface mode also weakens. The results shown
here are very similar to those noticed for a slab lens.20

To complement the above transfer function analyses, here
we numerically demonstrate the imaging performance of cy-
lindrical lenses using the finite element method �FEM�. The
issue of coupled surface-mode resonance, which gives rise to
the peaks in the transfer functions, is also addressed here.
The first lens to be examined has parameters of a=0.5
, d
=0.25
, and �=0.0001–0.00001i. We position a z-oriented
line current source at ro= �3b−a� /2. An image is expected at
ri= �3ab−a2� / �4b−2a� in lens interior. The real part of the
steady state �Ez� field is captured in Fig. 6�a�. An image is
clearly reconstructed inside the lens. However, the most no-
ticeable difference as compared to the idealized field distri-
bution in Fig. 1 is that strong localized fields are present at
the two surfaces of the lens. The maximum field values on
the surfaces are as high as 6500 positively and −5000 nega-
tively �in arbitrary unit�, which are about ten times as large
as the value at the object position. There are altogether 70
nodal lines along azimuthal direction, indicating the reso-
nance happens around m=35, which agrees with its corre-
sponding transfer function in Fig. 4. The imaginary part of
the field �not shown� has the same number of nodal lines, but
with different positions as compared to the real part. Hence
the surface wave is not standing, but traveling along � direc-
tion. An examination of the Poynting vector plot confirms
giant energy flow around the lens’ surfaces �not shown�. The
huge amount of energy that the lens can trap suggests that it
may require a certain amount of time for the system to reach
its steady state, and in turn to form the image. Another con-
sequence of the existence of heavy surface modes is that it
may disallow an object from being placed very near or very
far to the lens surface, which adds further restriction on the
effective lensing and detecting areas. From Fig. 4, we know
that a relatively lossy material can help to suppress the reso-
nance peak in transfer function, though at the expense of a
lower achievable resolution. We therefore carried out another
FEM analysis for the same structure but with �=0.0001
−0.001i. The real part of the Ez field is shown in Fig. 6�b�.
Compared to Fig. 6�a�, complete suppression of the surface
mode is seen at surface positions away from the line source.
Still, surface mode is present close to the line source, but its
strength has been reduced considerably compared to the pre-
vious calculation. For both cases, despite the localized sur-
face modes, field outside the lens experiences almost no dis-
turbance by the lens structure; it appears to be radiated
directly from the line source. Therefore the lenses are almost
invisible to an observer. The invisibility is due to the fact that
the particular coordinate transformation deployed assures the
whole structure bounded by r�b is electromagnetically
equivalent to vacuum. The perturbations introduced here are

insignificant for affecting the invisibility property.
With the same two lenses, we numerically demonstrate

their inward imaging of two parallel line current sources.
Such numerical experiments provide direct evidence for the
maximum achievable resolution. Note that here we calculate
the distance between two line sources or their images by
considering they are located on a cylindrical plane �concen-
tric to the lens surfaces�. Two z-oriented line sources are
placed at ro= �3b−a� /2, and azimuthally separated by a dis-
tance denoted as �L�. Their images are recorded while �L�

is decreased gradually. The recorded electric field intensity at
object and image planes for the low-loss and lossy lenses are
shown by the panels in the first and second rows in Fig. 7,
respectively. For the low-loss lens, the intensity at the image
plane shows very clearly the presence of two peaks when
�L�=0.22
, which corresponds well to the field at the object
plane. As �L� decreases, the peaks become less evident, and
they are overtaken by a central intensity peak when �L�

=0.16
. The central peak is caused by the extension of a
strong surface mode. It is however arguable that from the
image obtained for �L�=0.16
, one still can tell the infor-

(a)

(b)

FIG. 6. �Color online� Inward imaging of a line current source.
�a� �=0.0001–0.00001i. Overvalued fields are shown in saturated
color as dark red �positive� or dark blue �negative�, and contour
lines at the levels of 1000, 2000, 3000, 4000, 5000, and
6000 are marked. �b� �=0.0001−0.001i. Contour lines at the levels
of 1000, 1500, 2000, 2500, 3000, and 3500 are marked. Yellow
crosses are object and image positions. Domain size: 2.5
�2.5
.
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mation of two line sources. The overall image, though dis-
torted, can possibly be corrected through signal processing
techniques, especially if one has the preknowledge of the
distortion. For the lossy lens, the information of the two
current sources is almost completely lost at �L�=0.16
.
However, the two line sources becomes identifiable once
�L� reaches 0.18
. The recorded field intensities show much
less ripples due to the suppression of surface modes. In all
panels in Fig. 7, the blue �dark gray� curves represent the
field intensities at the object and image planes while the lens
is absent. Drastic decay in amplitude is noticed for the im-
ages recorded without a lens. Hence the restoration of eva-
nescent EM wave by a cylindrical lens is obvious. Compar-
ing the low-loss lens to the lossy one, we notice that the
latter suffers less disturbance from surface mode. Due to this
factor, its maximum achievable resolutions for both lenses
are almost comparable.

Lastly, we make a couple of comments on the perfor-
mance of a cylindrical lens when some parameter choices for
designing the lens are different from above analyses. First,
we comment on the effect of negative slope value used for
the spatial mapping function �Eq. �1��. In practice, one de-
sires to image an object that is far away from the lens, rather
than maneuvering the lens very close to the object for per-
forming an imaging. Theoretically this can be achieved by an
increase �negatively� in the negative slope value for the map-
ping function. However, for a fixed lens thickness, an in-
crease in the slope compresses the field in the lens body, or
equivalently increases proportionally the optical lengths for
all cylindrical wave components as they travel across the
lens body. That unfortunately amplifies the adverse effect of
material loss to the lens’ performance. We noticed that in
order to achieve the same resolution, the thickness of a lens
should be kept inversely proportional to the negative slope,
assuming the same material perturbation. Due to the neces-
sity of a decrease in lens thickness for maintaining reso-
lution, the object-to-image distance in fact shortens when the
negative slope increases. Another note is that an increase in
the negative slope gives rise to gradient lens material with
higher anisotropic ratio. Therefore such a way of increasing
the object distance outside the lens is not encouraged. Our

second comment is regarding the material perturbation intro-
duced. So far in our previous theoretical studies we have
chosen R��� to be positive, while I��� is kept negative.
Negative I��� is natural for denoting loss incurred by passive
materials. It is however foreseeable that in practical imple-
mentations R��� can easily be negative. Through calcula-
tions we have noticed the following situations for choosing a
negative R���. When �R���� is relatively larger than �I����,
change in the sign of R��� from positive to negative will
affect the characteristics of the transfer function only around
the resonance peak position. Noticeably, the resonance peak
will shift slightly to a larger k� position, regardless of inward
or outward operation mode. For example, the resonance peak
of the transfer function for the lens with �=0.001–0.0001i
in Fig. 4 will shift from k� /k1=4.70 to 5.05 if we use �
=−0.001–0.0001i. Under the scenario that �R���� is rela-
tively smaller than �I����, no significant change in transfer
function can be noticed when we flip the sign of R���.

In conclusion, based on the coordinate transformation
technique we have designed a type of cylindrical super-
lenses. The transfer function analyses show that such a cy-
lindrical lens, even with a wavelength-scale cross-section
size, can achieve similar subwavelength imaging resolution
as compared to the previously reported negative index slab
lens. Subwavelength imaging is demonstrated numerically
for cylindrical lenses with imperfect material parameters.
Like its slab lens counterpart, the cylindrical lens experi-
ences similar limitation as imposed by inevitable material
imperfectness. Most noticeably, at a practical loss level, a
cylindrical lens should have a subwavelength thickness in
order to realize subwavelength focusing. Therefore, these cy-
lindrical lenses are bound to be “near sighted,” a conclusion
previously drawn for slab lens.18 Besides high-resolution im-
aging, the proposed cylindrical lens can be applied for li-
thography applications. Consider a single Ez polarization op-
eration. A properly designed cylindrical lens can embed in its
interior a dielectric material with perfect impedance match-
ing. Image can then be written on the surface of that dielec-
tric material. The invisibility property of the cylindrical de-
vice can also be deployed for noninvasive electromagnetic
probing. Although not analyzed in this paper explicitly, the
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FIG. 7. �Color online� Imaging
of two parallel line current
sources. Panels in the first row
are for the lens with �
=0.0001–0.00001i, and those in
the second row are for the lens
with �=0.0001−0.001i. For pan-
els in both rows, from left to right,
�L� values are, respectively,
0.16
, 0.18
, 0.20
, and 0.22
.
Notice that the image has been
stretched by a factor of �2b
−a� /a due to the higher permittiv-
ity inside the lens. Red �gray�
lines: with lens; blue �dark gray�
lines: without lens. Thick lines:
intensity at image plane; thin
lines: intensity at object plane.
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coordinate transformation predicts that the same radial trans-
formation as described in Eq. �1� will yield a spherical su-
perlens. With the current fast-developing metamaterial tech-
nology, which has already been used for demonstrating
negative refraction,21,22 subwavelength imaging,14,15,23 and
even conceptual electromagnetic cloaking24 �also devised in
Ref. 25 for operating at optical wavelength�, etc., we should

be able to realize fabrication of the proposed cylindrical
superlens in the near future.
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